Pacific Centre for Isotopic and Geochemical Research
Department of Earth, Ocean and Atmospheric Sciences,
The University of British Columbia

Research Spotlight Archives

Improving our Understanding of Metal Leaching from Mine Wastes using Metal Stable Isotopes

by Elliott Skierszkan

Mining of ore deposits provides the raw materials used in the construction of vehicles, computer and telephone circuits, and buildings. As a result, it has become a major contributor to the local and national economies. However, tremendous amounts of waste rock and mine tailings are generated by mining, which need to be carefully managed to avoid the contamination of water by toxic trace metals.

Panorama of a large waste rock dump being studied as part of this project. Note the worker standing in front of the dump for scale! 
Panorama of a large waste rock dump being studied as part of this project. Note the worker standing in front of the dump for scale!

Mine waste dumps are often immense, filling valleys hundreds of meters in height, making it difficult to know exactly which chemical reactions control water quality with respect to trace metals. Rainfall and snowmelt percolate into these dumps, and dissolve metal-bearing minerals. Subsequent reactions such as secondary mineral precipitation and metal adsorption can help reduce metal concentrations in effluent waters and improve water quality, but these reactions are poorly understood.

eliott2
Sampling secondary iron oxide minerals from mine tailings effluent.

Recent improvements in mass spectrometry have shown that there are variations in metal stable isotope compositions as a result of these adsorption/precipitation reactions. This research project is taking advantage of our newfound ability to measure metal stable isotope ratios to use the stable isotope signatures of trace metals as a tracer for their chemical behaviour in mine waste dumps. It focuses on two metals in particular: molybdenum and zinc; both of which can become toxic when present at elevated concentrations in water.

The Nu MC-ICP-MS instrument at PCIGR is used for precise analysis of metal isotope ratios in mine water and rock samples.
The Nu MC-ICP-MS instrument at PCIGR is used for precise analysis of metal isotope ratios in mine water and rock samples.

Ultimately, a better understanding of the chemical reactions which control metal release from mine waste dumps can lead to improved predictions of water quality in these dumps, and therefore lead to more cost-effective and environmentally-protective management of mine wastes.

Elliott’s Papers:

Skierszkan, E.K., Mayer, K.U., Weis, D., and Beckie, R.D., 2016. Molybdenum and zinc stable isotope variation in mining waste rock drainage and waste rock at the Antamina mine, Peru. Science of The Total Environment, 550, 103–113.

Skierszkan, E.K., Amini, M. and Weis, D., 2015. A practical guide for the design and implementation of the double-spike technique for precise determination of molybdenum isotope compositions of environmental samples. Analytical and Bioanalytical Chemistry, 407, 1925–1935.