Possible link discovered between Earth’s crust and oxygen cycle

September 15, 2017

Cyanobacteria may have produced O2 as early as 3.7 billion years ago. Still, it took almost a billion years for that O2 to start accumulating in the shallow oceans and, subsequently, the atmosphere during a period commonly called the Great Oxidation Event (2.4–2.2 Gyr ago).

Image
Matthijs Smit photographing rock
Matthijs Smit examines ancient rocks from the deep crust in Norway during the summer of 2017.

The slow and stepwise rise of O2 in Earth’s atmosphere has always been somewhat of a mystery. Links to the changing composition of continents at the time have been proposed. However, with clear constraints on the average composition of the continents lacking, these links have been difficult to elucidate.

PCIGR's Matthijs Smit and Bern Unversity's Klaus Mezger decided to approach this problem by letting nature do the sampling. They analyzed the Cr/U chemistry of land-sourced sediments, working from the idea that these rocks sample large areas of the exposed continents and thus may provide a good representation of their average composition.

Their research revealed a staggering change in continental composition between 3.0–2.4 billion years ago. Before this period, the continents were much more rich in Mg and poorer in Si than today, and contained Mg-rich minerals such as olivine. Present-day analogues show that hydration of such mafic crust causes local surface waters to have extremely high pH and high concentrations of O2 scavengers such as methane and dihydrogen.

Although rare today, such reducing waters must have been common before 3.0 Gyr ago. Ultimately, it may have been the removal of Earth’s primitive proto-continents and the cleansing of the environment from O2 scavengers, which set System Earth on track towards having an oxygenated and habitable environment conducive to the evolution of higher life forms.

The findings are among the first reported from a new interdisciplinary research program on the formation and evolution of Earth’s earliest continents. In this program, lead-PI Smit and his students use the world-leading analytical facilities at PCIGR to analyze relics of Archean continental crust found in Canada, Greenland, India, South Africa and elsewhere.

Read the full research article here.

UBC News story: Changes in Earth’s crust caused oxygen to fill the atmosphere


  • News

First Nations land acknowledegement

We acknowledge that the UBC Point Grey campus is situated on the traditional, ancestral, and unceded territory of the xʷməθkʷəy̓əm.


UBC Crest The official logo of the University of British Columbia. Urgent Message An exclamation mark in a speech bubble. Caret An arrowhead indicating direction. Arrow An arrow indicating direction. Arrow in Circle An arrow indicating direction. Arrow in Circle An arrow indicating direction. Chats Two speech clouds. Facebook The logo for the Facebook social media service. Information The letter 'i' in a circle. Instagram The logo for the Instagram social media service. External Link An arrow entering a square. Linkedin The logo for the LinkedIn social media service. Location Pin A map location pin. Mail An envelope. Menu Three horizontal lines indicating a menu. Minus A minus sign. Telephone An antique telephone. Plus A plus symbol indicating more or the ability to add. Search A magnifying glass. Twitter The logo for the Twitter social media service. Youtube The logo for the YouTube video sharing service.