Pacific Centre for Isotopic and Geochemical Research
Department of Earth, Ocean and Atmospheric Sciences,
The University of British Columbia
news_banner

Thermal Ionization MS

Nu TIMS | Thermo Finnigan Triton TIMS | VG54R and VG354S TIMS


Nu TIMS

The Nu TIMS was installed at PCIGR in November 2014 and was first TIMS commercially produced by Nu Instruments Ltd. (UK). It was designed as part of a collaborative research and development partnership between PCIGR and Nu that aims to improve analytical techniques and instrument design for the benefit of the scientific community.

NuTIMS

The Nu TIMS is equipped with variable dispersion multi-collector technology to improve the versatility and overall performance of this long established analytical technique. Combining advances in filament assembly, ease of use and high precision, the Nu TIMS uses a patented Zoom lens system to ensure perfect peak alignment without needing to move the detectors. The Nu TIMS is equipped with an ion-counting mini Daly and an ion counter capable of precisely measuring small samples and low abundance isotopes, and so provides ultimate stability and dynamic range.

The Nu TIMS at PCIGR is used to measure Sr and Nd isotopic ratios. In 2015, in static mode, the average values for NBS 987 300ng was 0.710229 ± 26 (n=23) and for JNdi 100ng was 0.512121 ± 39 (n=12). In dynamic mode the average for NBS 987 300ng was 0.710250 ± 8 (n=19) and for JNdi 100ng was 0.512107 ± 11 (n=11).  The 2017–2018 average for NBS 987 was 0.710237 ± 21 (n=71).

We are also experimenting with analyses with much smaller sample loads, down to <10ng for Sr and <20ng for Nd.


Thermo Finnigan Triton TIMS

The Triton TIMS was installed in April 2002 and is heavily used by the geochemical tracer lab for high-precision analyses of radiogenic isotopes. The Triton is equipped with 9 Faraday cups and one ion counter. A special matrix system for data integration cancels out individual collector gain (virtual amplifier) and allows for the acquisition of high-precision analyses (<5 x 10-6 for 87Sr/86Sr and 143Nd/144Nd on 135 ratios [2SE, internal precision]). The barrel has 21 positions (17–18 samples and 3–4 standards) that permits the running of “routine” automated analyses (Sr, Nd) at a rate of one barrel every 2–3 days.

Trion TIMS

Since installation was completed in October 2002, the UBC Triton has analyzed more than 10,000 sample isotopic compositions. Initially we had an even distribution between Nd and Sr analyses but nowadays the Triton is entirely dedicated to Sr analyses.

In October 2003, we replaced the H3 collector with the help of Isomass. For reproducibility and instrument performance, the running means for the standards were:
NBS 987: 0.710252 ± 12 (n=77)
La Jolla: 0.511853 ± 11 (n=91)

In September 2005, all the inserts of the collectors were replaced. After these replacements, the running means for the standards were:
NBS 987: 0.710246 ± 17 (n=89)
La Jolla: 0.511852 ± 12 and 0.348406 ± 8 (n=50)

In January 2008, an amplifier and all the inserts of the collectors were replaced again. Afterwards, the running means for the standards were:
NBS 987: 0.710243 ± 27 (n=114; January-September 2008)
La Jolla: 0.511853 ± 15 and 0.348407 ± 12 (n=102)

In autumn 2008, the NBS 987 values began drifting upward again, to barrel averages of 87Sr/86Sr = 0.710276 ± 9. We therefore changed the cup configuration and put 88Sr in H2; the NBS 987 values came back down to 0.710253 ± 21 (n =49). As the 87Sr/86Sr started climbing immediately, we shifted to 88Sr in the H1 collector and achieved an average of 0.710242 ± 12 (n=9). After observing a new increase in the 87Sr/86Sr ratios at the end of 2012, we again replaced the inserts of all the cups in January 2013. During 2017–2018, the average was 0.710248 ± 13 (n=34). This drift is clearly of great concern to us and we will continue monitoring the evolution of the standard ratios, as well as processing complete procedural duplicates for each batch of samples.


VG54R and VG354S TIMS

VG54R
The Micromass VG54R single-collector TIMS was purchased in 1982 with NSERC support and underwent major upgrades in 1987 and 1995. It is currently configured with a Faraday collector and Daly photomultiplier, the latter for low-level U-Pb analyses (<1 ng radiogenic Pb), digital voltmeter and an automated 16-sample turret. This instrument is now primarily used to determine Pb and U blanks from in-house produced ultrapure reagents, as well as to determine blanks for common Pb and U-Pb studies. It is also used for single-grain zircon chemical abrasion (CA-TIMS) U-Pb, U-Pb accessory phase analysis, and for common Pb analysis of sulphide minerals and feldspar.

VG354S
This single-collector TIMS instrument with Sector 54 electronics was acquired in 2008 from the University of California at Berkeley, where it was housed in the lab of Dr. Donald DePaolo (Department of Earth and Planetary Science). It is currently configured with an automated 20-sample turret, an oversized Faraday collector (originally acquired to facilitate Ca isotopic analyses), an analogue Daly collector used for low level U-Pb analyses, a digital voltmeter, and digital pyrometer. It is operated with the most recent version of Sector 54 software. Since 2009 this instrument has been used exclusively for single-grain CA-TIMS U-Pb analysis of zircon, and a variety of U-Pb accessory phases.

VG54R & Sector TIMS

Both of these instruments support the PCIGR geochronology lab, which conducts ID-TIMS U-Pb analysis on zircon (CA-TIMS single-grain work) and other U-Pb accessory phases including baddeleyite, monazite, titanite, allanite, garnet, apatite and rutile, from rocks of ultramafic through felsic compositions.

The PCIGR geochronology lab has been involved with the EARTHTIME initiative since 2006. During that year we acquired the three U-Pb reference solutions made available for spike calibration and used them to recalibrate the UBC mixed 205Pb-233-235U isotopic tracer. In 2008 we acquired and began to analyze the EARTHTIME synthetic solution reference materials (100Ma, 500Ma and 2Ga). We continue to routinely analyze these solutions to the present time. In June 2010 we received our first aliquot of ET535 spike, and in September 2015 we received a refill of this EARTHTIME isotopic tracer. This spike is used for much of the U-Pb geochronology work conducted in the lab.

Since PCIGR was established in January 2002, and through to July 2018, the UBC U-Pb group has produced >6500 U-Pb isotope dilution analyses (from more than 1200 rock samples), >2400 sulphide mineral common Pb isotopic compositions, and >2600 U-Pb standard and blank analyses.